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Effects of correlated disorder on wave localization have attracted considerable interest. Motivated by the
importance of studies of quantum transport in rough nanowires, here we examine how colored surface rough-
ness impacts the conductance of two-dimensional quantum waveguides, using direct-scattering calculations
based on the reaction matrix approach. The computational results are analyzed in connection with a theoretical
relation between the localization length and the structure factor of correlated disorder. We also examine and
discuss several cases that have not been treated theoretically or are beyond the validity regime of available
theories. Results indicate that conductance properties of quantum wires are controllable via colored surface
disorder.
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I. INTRODUCTION

Ever since the model of Anderson1 of electron transport in
disordered crystals, wave localization in disordered media
has attracted great interest due to its universality. For ex-
ample, two recent experiments directly observed matter-
wave localization in disordered optical potentials using
Bose-Einstein condensates.2,3 One of the most known results
from the model of Anderson1 is that in one-dimensional �1D�
disordered systems, the electron wave function is always ex-
ponentially localized and hence does not contribute to con-
ductance for any given strength of disorder. Note, however,
that this seminal result is based on the strong assumption that
the disorder is of the white-noise type. If the disorder is
colored due to long-range correlations, then a mobility edge
may occur in one-dimensional systems as well.4

Quantum transport in nanowires is of great interest due to
their potential applications in nanotechnology. In addition to
the possibility of ballistic electron transport, quantum nano-
wires are found to show many other important properties. In
particular, silicon nanowires can have better electronic re-
sponse time5 as well as desirable thermoelectric properties.6

It is hence important to ask how the nature of surface disor-
der of quantum wires, modeled by quantum waveguides in
this study, affects their conductance properties.

Remarkably, if the surface scattering contribution is weak,
then it is possible to map the conduction problem of a long
two-dimensional �2D� rough waveguide to that of a 1D
Anderson model of localization, with the disorder potential
determined by the surface roughness.7,8 Initially this map-
ping was established for one-mode scattering but later it was
generalized for any number of modes in the transverse
direction.9 As such, a quantum wire with white-noise surface
disorder will have zero conductance if the localization length
is much smaller than the wire length. However, in reality the
surface disorder of a rough quantum wire always contains
correlations. As a result it becomes interesting and necessary
to understand the conductance properties in rough quantum
wires with their surface disorder modeled by colored
noise. This has motivated several pioneering theoretical

studies.4,7–11 Under certain approximations the theoretical
studies predicted localization-delocalization transitions of
electrons in 2D waveguides with colored surface disorder.
Some theoretical details were tested by examining the eigen-
states of a closed system with rough boundaries.12 Moreover,
the predicted mobility edge due to colored disorder was re-
cently confirmed in a microwave experiment.13

Using a reaction matrix formalism for direct-scattering
calculations, here we computationally study the conductance
properties of rough quantum wires with colored surface dis-
order. The motivation is threefold. First, though the depen-
dence of the localization length upon the correlation function
of surface roughness is now available from theory, how the
more measurable quantity, namely, the conductance of the
waveguide, depends on colored surface roughness has not
been directly examined. This issue can be quite complicated
when the localization length becomes comparable to the
waveguide length. Second, computationally speaking it is
possible to consider any kind of colored surface disorder,
thus realizing interesting circumstances that are not readily
testable in today’s experiments. Indeed, in our computational
study we can create rather arbitrary structures in the surface
disorder correlation function and then examine the associated
conductance properties. Third, direct computational studies
allow us to predict some interesting conductance properties
that have not been treated theoretically or go beyond the
validity regime of available theories.4,7–9,14 For example, we
shall study the conductance properties for very strong surface
roughness, for rough bended waveguides, and for scattering
energies that are close to a shifted threshold value for trans-
mission. The long-term goal of our computational efforts
would be to explore the usefulness of colored surface disor-
der in controlling the conductance properties.

This paper is organized as follows: In Sec. II we describe
the scattering model of a quantum wire with colored surface
disorder. Therein we shall also briefly introduce the method-
ology we adopt for the scattering calculations. In Sec. III we
present detailed conductance results in a variety of one-mode
scattering cases and discuss these results in connection with
theory. Concluding remarks are made in Sec. IV.
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II. QUANTUM SCATTERING IN WAVEGUIDES WITH
COLORED SURFACE DISORDER

A. Modeling waveguides with colored surface disorder

We treat quantum wires as a long 2D waveguide as illus-
trated in Fig. 1�b�. The scattering coordinate is denoted x and
the transverse coordinate is denoted y. The width of the
waveguide is denoted w and the length is denoted L. In all
the calculations L=100w and w is set to be unity. That is, we
scale all lengths by the waveguide width. The upper and
lower boundaries of the waveguide are described by y
= P�x� and y=Q�x�. The case in Fig. 1�b� represents a situa-
tion where the upper boundary is a straight line �P�x�=1�
and the lower boundary is rough. As in our other studies of
rough waveguides,15,16 we form a rough waveguide bound-
ary in three steps. First, we divide a rectangular waveguide
into M pieces of equal length L /M. Second, the end of each
piece is shifted in y randomly, with the random y displace-
ment, denoted �, satisfying a Gaussian distribution. Third,
we use spline interpolation to combine those sharp edges to
generate a smooth curve ��x� for either the upper or the
lower waveguide boundary. For the sake of clarity, Fig. 1�a�
depicts this procedure with the number of random shifts be-
ing as small as M =4. In all our calculations below we set
M =100. In Fig. 2�a� we show one realization of the surface
roughness function ��x�.

The function ��x� may be characterized by its ensemble-
averaged mean �̄ and its self-correlation function C��x−x��,
i.e.,

�̄ = ���x�� = 0,

���x���x��� = �2C��x − x�� , �1�

where � is the variance of ��x�. In the limit of white-noise
roughness, C��x−x�� is proportional to ��x−x��. But more
typically, C��x−x�� decays at a characteristic length scale,
called the correlation radius Rc. For our case here, because

the randomness is introduced after dividing the waveguide
into M =100 pieces, the correlation length Rc of the ��x� we
construct here is on the order of L /M �w. This length scale
is comparable to the wavelength of the scattering electrons in
the one-mode regime.

One tends to characterize the strength of the surface
roughness by the variance � defined above. However, in
practice it is better to use the maximal absolute value of
��x�, denoted ��max�, to characterize the roughness strength.
This is because for strong roughness with a given variance,
there is a possibility that some of the random displacements
become too large such that the waveguide may be com-
pletely blocked. Recognizing this issue, we first set a value
of ��max� and then, after having generated a roughness func-
tion ��x� based on spline interpolation, rescale ��x� such that
its maximal absolute value is given by ��max�.

The roughness function ��x� obtained above does not
have any peculiar features. There are a number of ways to
introduce some structure into the correlation function C��x
−x��. In Ref. 17 a filtering function method was proposed to
produce a power-law decay of C��x−x�� from white noise.
Here we adopt the approach used in Ref. 18, which is based
on the convolution theorem of Fourier transformations. In
particular, the discrete form of autocorrelation function of
��x� is defined as

C�	mL

N

 = c �

n=1

N−m−1

�	 �n + m�L
N


�	nL

N

 , �2�

where m=−N+1, . . . ,−1 ,0 ,1 , . . . ,N−1,N is the total num-
ber of grid points along x and c is a normalization constant
such that C��0�=1.19 In Fig. 2�b� we show the autocorrela-
tion function for the surface roughness function depicted in
Fig. 2�a�. The autocorrelation drops from its peak value to
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FIG. 1. Schematic plot of a 2D rough waveguide that models
rough quantum wires. �a� The generation of a rough surface is il-
lustrated using M =4 random shifts in the transverse direction. �b�
One waveguide geometry with a straight upper boundary y= P�x�
=1 and a rough lower boundary y=Q�x�. Scattering occurs in re-
gion I �gray area� and region II denotes the left and right leads.
Arrows indicate the direction of incoming and outgoing electron
waves. An, Bn, Cn, and Dn are quantum amplitudes �see Eq. �8��.
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FIG. 2. �a� One realization of the surface roughness function
��x�, with the method described in detail in the text. �b� The asso-
ciated autocorrelation function C��x�. �c� Surface structure factor
���k� obtained from the C��x� shown in panel �b�. �d� A function
��x� that will be used to introduce additional correlations via con-
volution. �e� The Fourier transform of the ��x� shown in panel �d�.
�f� The structure factor ��̃�k� obtained from a convolution between
��x� and ��x�. �g� The new surface roughness function �̃�x�, with
correlations that are absent in ��x�.
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near zero at a scale of Rc�0.7w, which is much smaller than
the waveguide length.

As will be made clear in what follows, it is important to
consider the Fourier transform of C��x�, i.e., the autocorre-
lation function in the Fourier space. This important quantity
is denoted ���k�, where k is the wave-vector conjugate to x.
Using the fast Fourier transform of C��x�, ���k� can be
evaluated as follows:

���k� = �
j=1

2N

C�	 jL

2N

exp�− i2��j − 1��m − 1�

2N
 , �3�

where the value of k on the left side is determined by the
value of m on the right side via k= �2�m /2N�−1��2�N /2L�.
In our calculations we choose N=1024. Note that ���k� is a
real function due to the evenness of C��x�. The real function
���k� is called below the structure factor of the surface
roughness. Figure 2�c� shows the structure factor ���k� ob-
tained from the correlation function shown in Fig. 2�b�.

Additional correlations in the surface disorder can now be
generated by modulating the structure factor ���k�. Because
the structure factor ���k� for a single realization is equivalent
to the square of the Fourier transform of ��x�, we may im-
print interesting structures onto ���k� by convoluting ��x�
with some filtering function. Consider then the function
���x�=sin�ax� /ax, with a�0. Its Fourier transform is a step
function of �k�, with a height � /a and the step edge located at
�k�=a.9 Consider then a combination of many such functions,
i.e.,

��x� = �
n

An

sin��an
r �x� − sin��an

l �x�
�an

r �x
, �4�

where An, an
r , and an

l are predefined parameters. Then the
Fourier transform will be � /An if an

r � �k��an
l or an

r 	 �k�
	an

l , and zero otherwise. If we now consider the roughness
function20

�̃	mL

N

 = �

n

�	nL

N

�	 �m − n�L

N

 , �5�

then according to the convolution theorem, we have

���̃�k��1/2 � ����k������k��1/2, �6�

where ��̃�k� is the structure factor for the new surface rough-
ness function �̃�x�. As such, the structure of ���k� is directly
imprinted on ��̃�k�. That is, computationally speaking, arbi-
trary modulation can be imposed on the structure factor by
filtering out the unwanted components and magnifying other
desired structure components. Below we apply this simple
technique to create different kinds of surface roughness cor-
relation windows and then examine the conductance proper-
ties. In Fig. 2�d� we show one example of ��x�. Its Fourier
transform amplitude, as shown in Fig. 2�e�, displays two
windows. As shown in Fig. 2�f�, this double-window struc-
ture is passed to ��̃�k� due to Eq. �6�. Finally, in Fig. 2�g� we
show the surface roughness function �̃�x�, which obviously
contains more correlations than the old surface roughness
function ��x� shown in Fig. 2�a�.

B. Reaction matrix and scattering matrix

Here we briefly describe how we calculate the electron
conductance of a rough 2D waveguide as described above.
The Hamiltonian for the quantum transport problem is given
by

Ĥ = −

2

2m�	 �2

�x2 +
�2

�y2
 + Vc�x,y� , �7�

where m� is the electron effective mass and Vc�x ,y� repre-
sents a hard wall confinement potential. That is, Vc�x ,y� is
zero in Q�x�	y	 P�x� and becomes infinite otherwise. In
our early work15,16 we formulated such a waveguide scatter-
ing problem in detail in terms of the so-called reaction ma-
trix method. In the reaction matrix method we first expand
the scattering state in the scattering region �region I, gray
area in Fig. 1�b�� in terms of a complete set of basis states.
The basis states are obtained by transforming the rough
waveguide into a rectangular one, at the expense of a trans-
formed Hamiltonian with extra surface dependent terms. The
solutions in the leads �region II, Fig. 1�b�� are given by

�l = 	An
eiknx

�kn

− Bn
e−iknx

�kn

sin	n�y

w

 ,

�r = 	Cn
eiknx

�kn

− Dn
e−iknx

�kn

sin	n�y

w

 �8�

for the left and right leads, respectively. Here n is the index
for the modes in the transverse direction, and the wave vec-
tor kn is given by

kn =�2mE


2 − 	n�

w

2

, �9�

where E is the initial electron energy. The scattering coeffi-
cients An, Bn, Cn, and Dn in Eq. �8� are determined by the
scattering matrix S, which relates the outgoing states to the
incoming states. Specifically,

	Bn

Cn

 = 	 r t

t� r�

	An

Dn

 , �10�

where the submatrices r and r� denote the reflection matrix
and t and t� denote the transmission matrix. In the case of
one-mode scattering �n=1� considered below, k1 will be sim-
ply denoted as k, with 0	kw /�	�3. The S matrix is related
to the so-called R matrix in the reaction matrix method as
follows:

S =
I2m − iKRK

I2m + iKRK
, �11�

where m is maximal number of propagating modes, I2m is a
2m�2m unit matrix, and K is 2m�2m diagonal matrix with
diagonal elements determined by the wave vector associated
with each scattering channel.15,16 Once the S matrix is ob-
tained from the R matrix, the conductance is calculated by
G=G0 Tr�tt��, where G0=e2 / �2
� is the conductance quanta.
Note that in our calculations we include about ten evanescent
modes though we focus on the energy regime where only one
mode in the y direction admits propagation along x. As to the
number of basis states we use in describing the transformed
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rectangular waveguide, we use 1000 basis states for the x
degree of freedom and 4 basis states for the y degree of
freedom. Such a large number of basis states is for a good
description of the scattering wave function inside the wave-
guide; this number should not be confused with the number
of propagating modes or evanescent modes. Good conver-
gence is obtained in our calculations. Note also that due to
the large number of basis states used in the scattering direc-
tion, the Fourier transform techniques developed in Ref. 15
is especially helpful.

III. EFFECTS OF COLORED SURFACE DISORDER
ON CONDUCTANCE

With the mapping between the scattering problem in 2D
waveguide and 1D Anderson’s model,7,8 early theoretical
work7,9 established that the localization length Lloc of the 2D
waveguide problem is given by

Lloc
−1 =

�2�4

w6

��2k�
�2k�2 , �12�

where ��2k� is either the structure factor ���2k� or the new
structure factor ��̃�2k� after a convolution procedure. If
Lloc�L, a transmitting state is expected and if LlocL, then
the electron can only make an exponentially small contribu-
tion to the conductance. As such, one expects transmitting
states when the structure factor ��2k� is essentially zero, and
negligible conductance if ��2k� is significant and if � is not
too small. This suggests that the conductance properties can
be manipulated by realizing different surface roughness
functions.

A. Straight rough waveguides

Equation �12� is obtained under a weak-electron-
scattering approximation �Born approximation�. As such, the
theoretical result of Eq. �12� may not be valid if � is not
small as compared with w or if the scattering electron is
close to the threshold value of channel opening. Another as-
sumption in the theory is that Lloc should be much greater
than Rc, the radius of the surface correlation function C��x�.

However, in our computational studies we will examine
some interesting cases that are evidently beyond the validity
regime of the theory. For example, the strength of the surface
disorder may not be small and the scattering energy may be
placed in the vicinity of a shifted channel opening energy.

In Fig. 3�a� we show conductance results averaged over
three realizations of a rough waveguide, with a flat upper
boundary P�x�=1 and a rough lower boundary Q�x�=��x�.
The strength of the surface disorder is characterized by
��max�=0.2w. Due to our procedure in generating a fixed
��max�=0.2w, the variance � of the surface roughness func-
tion in each single realization of the surface will change
slightly. For example, for the three realizations used in Fig.
3�a�, �=0.0779w, 0.0802w, and 0.0773w. As clear from Fig.
3�a�, there exists a threshold k�0.6� /w beyond which the
system becomes transmitting �this threshold will be ex-
plained below�. In the transmission regime the conductance
shows a systematic trend of increase as the wave vector k

increases. The inset of Fig. 3�a� shows ���2k�, one key term
in Eq. �12�. The characteristic magnitude of ���2k� for the
shown regime of k is �0.3. Using Eq. �12�, one obtains that
the localization length Lloc is comparable to L=100w. This
prediction is hence consistent with our computational results
that demonstrate considerable transmission.

Next we exploit the convolution technique described
above to form new rough surfaces described by �̃�x�. In par-
ticular, the inset of Fig. 3�b� shows two sample cases with
distinctively different surface structure factors. In one case
�dotted line� ��̃�2k� has significant values in the interval
0.67	kw /�	0.8. Indeed, during that regime the value of
��̃�2k� is many times larger than the mean value of ���2k� in
the case of Fig. 3�a�. In the other case �solid line� ��̃�2k� is
large only in the regime of 0.75	kw /�	0.9. For these re-
gimes, the theory predicts the localization length to be much
smaller than the waveguide length and hence vanishing con-
ductance. This is indeed what we observe in our computa-
tional study. As shown in Fig. 3�b�, either the dotted or the
solid conductance curve displays a sharp dip in a regime that
matches the main profile of ��̃�2k�.

In addition, similar to what is observed in Fig. 3�a�, Fig.
3�b� also displays a transmission threshold. Take the dotted
line in Fig. 3�b� as an example. For kw /�	0.55, there is no
transmission at all, even though ��̃�2k� in that regime is
essentially zero. This suggests that this threshold behavior is
unrelated to surface roughness details. Rather, it can be con-
sidered as a nonperturbative result that is not captured by Eq.
�12�. To qualitatively explain the observed threshold, we re-
alize that due to the relatively strong surface roughness, the
effective width of the waveguide decreases and as a result,
the effective mode opening energy increases.15 For ��max�
=0.2w, we estimate that the effective width of the waveguide
is given by weff�w− ��max�=0.8w. Hence, the corrected
mode opening energy E is now given by �
2 /2m���� /0.8w�2.
Using Eq. �9�, this estimate gives, regardless of the surface
roughness details, the threshold k value for transmission to
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FIG. 3. �a� Conductance of rough waveguides vs k=k1 �see Eq.
�9��. The upper boundary is flat, i.e., P�x�=1, and the lower bound-
ary is given by Q�x�=��x�, with a surface disorder strength charac-
terized by ��max�=0.2w. Inset on the right shows the structure factor
of the surface roughness in one single realization. �b� Same as panel
�a� but for two cases with different surface structure factors ob-
tained from a convolution approach are plotted, using solid and
dashed lines. All conductance curves here are averaged over three
realizations.
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be �0.75� /w, which is close to what is observed in Fig. 3.
Such an explanation is further confirmed below. This also
demonstrates that the maximal value of ���x�� is an important
quantity in characterizing the surface roughness strength.
Certainly, the exact dependence of the effective waveguide
width upon �max is beyond the scope of this work.21

The results in Fig. 3 show that even when the surface
roughness is strong enough to significantly shift the thresh-
old energy for transmission, the surface structure factor may
still be well imprinted on the conductance curve. Moreover,
the resultant windows of the conductance curves in Fig. 3 are
seen to match the location of the structure factor peak. Nev-
ertheless, one wonders how such an agreement might change
if we tune the strength of the surface roughness.

To that end we examine in Fig. 4 four scattering cases
with increasing roughness strength, with ��max�=0.01w and
�=0.0046w in Fig. 4�a� �representing a case with quite weak
surface roughness�, ��max�=0.1w and �=0.0400w in Fig.
4�b�, ��max�=0.2w and �=0.0779w in Fig. 4�c�, and ��max�
=0.3w and �=0.1255w in Fig. 4�d� �representing a case with
very strong surface roughness�. The main profile of the struc-
ture factor is also shifted closer to the threshold regime ob-
served in Fig. 3. For the case with ��max�=0.3w, the theory
based on the weak roughness assumption is not expected to
hold. Indeed, in Fig. 4�d� the transmission threshold is right
shifted further to the high-energy regime as compared with
those seen in Fig. 3 or other panels in Fig. 4. Nevertheless,
we still observe a clear window of almost zero conductance,
but now with its location also significantly shifted as com-
pared with the profile of ��̃�2k�. For the case of ��max�
=0.2w in Fig. 4�c�, it is somewhat similar to the dotted line
in Fig. 3�b�, consistent with the fact that they have the same
roughness strength. However, because here the location of
the peak of ��̃�2k� is close to the threshold k value, the zero
conductance window is also near this threshold: The conduc-
tance curve rises when k exceeds the threshold and then it
quickly drops to zero again. For the case of ��max�=0.1w, its
zero conductance window shown in Fig. 4�b� is narrower

than those in Figs. 4�c� and 4�d�, consistent with our intu-
ition. Somewhat surprising is the case shown in Fig. 4�a�,
where the roughness strength is weak and the energy thresh-
old for transmission is almost unaffected. But still, a narrow
window for very small conductance is clearly seen in Fig.
4�a�. This result is unexpected because if one applies Eq.
�12� directly, one would predict that no such conductance
window should occur for ��max�=0.01. Further, the conduc-
tance window in Fig. 4�a� is much left shifted as compared
with the profile of ��̃�2k� �inset of Fig. 4�a��. Similar results
are obtained in other realizations of the surface roughness
function ��x� that have a similar profile of the structure
factor.22 Such a remarkable deviation from the theory, we
believe, is due to a breakdown of the Born approximation in
deriving Eq. �12�. Indeed, the conductance window for
��max�=0.01 is located in a regime of very low scattering
energy and is hence not describable by a theory based on the
Born approximation. Certainly, it should be of considerable
interest to experimentally study the conductance windows in
these cases of weak surface roughness.

To further confirm that the conductance windows ob-
served here are due to the colored surface disorder, we note
that if we consider a surface roughness function as that
shown in the inset of Fig. 3�a�, then all the clear conductance
windows shown here indeed disappear.

B. Bended rough waveguides

In Fig. 5 we examine the conductance properties of a
bended rough waveguide �Figs. 5�b� and 5�c�� as compared
with those of a straight rough waveguide �Fig. 5�a��. In all
the three cases shown in Fig. 5, the upper boundary is given
by P�x�=1, and the lower boundary is a parabolic curve plus
random fluctuations, i.e., Q�x�=4a�x−L /2�2 /L2+ �̃�x�, with
a=0 in Fig. 5�a�, a=0.5 in Fig. 5�b�, and a=1.0 in Fig. 5�c�.
As to the structure factor of �̃�x�, it is assumed to be of a
double-window form as shown in the inset of Fig. 5�a�, with
��max� the same as in Fig. 3. In the case of a straight rough
waveguide, this double-window structure factor creates an
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to what is considered in Fig. 3 but with a different structure factor.
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=0.1255w in �d�. Inset shows the surface structure factor used in
�a�–�d�.
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guide geometry.
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analogous double-window structure in the conductance curve
�Fig. 5�a��, with its location matching the profile of the struc-
ture factor. Interestingly, as we introduce a curvature in the
lower boundary in Fig. 5�b�, the double-window structure
survives but shifts considerably toward higher k values. In
Fig. 5�c�, the curvature of the rough waveguide further in-
creases, the transmission threshold value of k also increases
�as expected�, and the fingerprints of the double-window
structure factor can still be seen in the conductance curve.
We have also checked that if we create three windows in the
structure factor, then three windows in the conductance
curves can be induced as well, with their locations control-
lable by tuning the curvature of the bended waveguide.

C. Rough waveguides with correlated boundaries

Finally we consider waveguides with both upper and
lower boundaries being rough. Interestingly, in this case a
more sophisticated theory14 shows that the scattering can be
regarded as the scattering in a smooth waveguide plus an
additional effective potential. The theoretical electron mean
free path, calculated using a Green’s function averaged over
different surfaces, is shown to be contributed by different
terms, due to different mechanisms called amplitude scatter-
ing, gradient scattering, and square gradient scattering.14 The
importance of these terms depends on whether the upper and
lower boundaries are symmetric, uncorrelated, or antisym-
metric. Motivated by this interesting prediction, we show in
Fig. 6 three computational results, for symmetric �Fig. 6�a��,
uncorrelated �Fig. 6�b��, and antisymmetric boundaries �Fig.
6�c��, all with the same roughness strength as in Fig. 3.

For the symmetric case, the effective waveguide width is
not affected by the roughness. By contrast, for the antisym-
metric case in Fig. 3�c�, the effective waveguide width is
most affected. These two simple observations explain why
the threshold k value for transmission is the smallest in Fig.

6�a� and the largest in Fig. 6�c�. Even more noteworthy is
how the structure factor of surface roughness generates a
conductance window for these three cases. In particular, the
window of the conductance drop in the symmetric case �Fig.
6�a�� is narrower than that seen in Figs. 6�b� and 6�c�. More-
over, the conductance window in the antisymmetric case is
the widest one and is much shifted toward high k values as
compared with the structure factor. This large mismatch be-
tween the conductance window and the peak location of
��̃�2k� hence reflects clearly an effect from the correlation
between the two rough boundaries. Though our results can-
not be easily explained by the theoretical result of Eq. �12�,
they are consistent with the theoretical prediction in Ref. 14
that among the three cases of symmetric, uncorrelated, and
antisymmetric waveguides, the electron mean free path in
antisymmetric waveguides should be the shortest.

IV. DISCUSSION AND CONCLUSION

In this computational study we have focused on how the
structure of surface roughness impacts the conductance prop-
erties of electrons propagating in a quantum wire modeled by
a 2D waveguide. Our conductance results are directly com-
puted from a reaction matrix approach. An early theoretical
result is hence confirmed by detailed behavior of the conduc-
tance, a quantity that should be measurable in experiments.
In addition, our results for symmetric, uncorrelated, and an-
tisymmetric rough waveguides are consistent with a very re-
cent theory.14

Unlike in the bulk case, for quantum wires of limited
length the sensitive dependence of the localization length
upon the structure factor of surface roughness can be easily
manifested in conductance properties. Our direct-scattering
calculations show that this is true, even for those interesting
cases that are beyond the domain of today’s theory or have
not been treated theoretically. We conclude that conductance
properties are easily controllable by engineering the surface
roughness of quantum wires.

Though we have focused on the transport behavior of
electrons, we believe that our methodology might be also
useful for studies of other types of wave propagation in dis-
ordered systems. In particular, there is now a keen interest in
understanding phonon transport in rough quantum wires. Re-
cent computational work23 and experimental work24 showed
the importance of surface disorder in the heat transport of
thin silicon nanowires with a radius of w=22 nm. It was also
demonstrated experimentally that surface roughness can be
used to dramatically suppress heat conductivity6 and hence
enhance thermoelectric efficiency for thin silicon nanowires
with a radius of about w=50 nm. Our computational tools,
together with the guidance from the theory,4,7–9,14 might help
answer some important questions regarding to phonon trans-
port in rough nanowires. Indeed, we conjecture that it should
be possible to design some colored surfaces to create con-
ductance windows for phonons but not for electrons. If this is
indeed realized, then electron conductance is not much af-
fected and phonon conductance will be greatly reduced. This
will be of vast importance in thermoelectric applications.

Finally, we note that spin accumulation in quantum
waveguides with rough boundaries was recently studied in
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FIG. 6. �a� Conductance of a rough waveguide with symmetric
surfaces, modeled by an upper boundary P�x�=1+ �̃ and a lower
boundary Q�x�= �̃�x�. Inset shows the surface structure factor used
in all the calculations here. �b� Conductance of a rough waveguide
with two uncorrelated surfaces, modeled by an upper boundary
P�x�=1+ �̃��x� and a lower boundary of Q�x�= �̃�x�. Inset shows
the associated waveguide geometry. �c� Conductance of a rough
waveguide with two antisymmetric surfaces, modeled by an upper
boundary P�x�=1− �̃�x� and a lower boundary Q�x�= �̃�x�. Inset
shows the associated waveguide geometry.
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Ref. 16. It should be interesting to see how colored surface
disorder might have some useful impact on spin accumula-
tion effects or spin transport.
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